Working Model 2D

2D Dynamic Motion Simulation

nifty image
 

Anatomy Students use Engineering Software to Study the Human Body at University of Tennessee (224k PDF)
While engineering software is commonly used to analyze and test parts found in cars, airplanes, or other complex mechanical systems, its ability to model continuous motion lends itself to studying motion of the human body's joints as well. At the University of Tennessee at Memphis School of Biomedical Engineering, graduate students in an anatomy course study the human body's muscular and skeletal systems using engineering concepts and a mechanical model based on visualNastran® software.

Professor Uses Working Model as New Class Problem-Solving Tool (222k PDF)
Professor Charles Proctor, of the University of Florida in Gainesville, has found a way to give his engineering students a more hands-on appreciation for their work. He now utilizes Working Model, inexpensive desktop mechanical simulation software developed by Design Simulation Technologies. The product's intuitive interface and advanced simulation engine allows models to be created and analyzed quickly and simply.

Working Model® Moves into School Computer Labs (221k PDF)
Dorm rooms, cafeteria food, all-nighters...and Working Model? The engineering student's experience at colleges across the country is taking on a new element. Major universities like Rose-Hulman, Stanford, University of Michigan, and others are busily incorporating Working Model as an integral part of their academic environment.

Engineering Freshman Jump into Design at Georgia Tech (221k PDF)
Georgia Tech Aerospace Engineering students are getting a good idea of how interesting and complex design can be in a new Freshman Design course taught by Dr. Kurt Gramoll. Working Model®, along with Excel, Word, TK Solver, and MATLAB, are introduced to entering freshmen in this basic computers-in-engineering course.

Working Model® Simulates Biomechanics at Berkeley (221k PDF)
When humans and other animals hop or run, they literally bounce along the ground using muscles, tendons, and ligaments to store and return elastic energy. Past research has shown that the mechanics of these bouncing gaits can be accurately modeled by a simple spring-mass system. The model consists of a point mass representing the body mass of the subject and a linear compression leg spring. This spring mass model has been shown to accurately predict the mechanics of all running, hopping, and trotting mammals studied to date.


 
 

Company News

SimWise Motion Integrated with IronCAD. Read the press release »

DST Announces SimWise V9.8. Read the press release »

SimWise integrated with The Mathwork's Simscape Multibody. Watch the video »

Design Simulation Technologies 43311 Joy Road, #237 Canton, MI 48187 USA

Toll Free: (800)-766-6615

Phone: +1-(734)-446-6935

Fax: +1-(734)-259-4207

info@design-simulation.com

Sales Inquiries - Direct Line

Phone: +1-(415)-775-1020